CSE4203: Computer Graphics Chapter - 7 (part - B) Viewing

Mohammad Imrul Jubair

Outline

- Coordinate Transformation
- Camera Transformation

Credit

Fundamentals of Computer Graphics F O U R T H E D I T I O N

Steve Marschner

Peter Shirley
with
Michacl Achikhmin Michael Cletcher
Naty Hoftman
Carretefotinsen Mamara Munane Trik Reinhard WWillam B. Thomp \& Perce wibemsen Cin wrili

1
x
$\times \mathrm{F}^{3}$

CS4620: Introduction to Computer Graphics

Cornell University Instructor: Steve Marschner http://www.cs.cornell.edu/courses/cs46 20/2019fa/

Recap (1/1)

Coordinate System (1/1)

- A coordinate system, or coordinate frame, consists of an origin and a basis: a set of three (two for 2D) orthonormal vectors.

Canonical coordinate system:

- origin o
- orthonormal basis vectors $\{\mathrm{x}, \mathrm{y}\}$.
- Also called: World coordinates

Coordinate Transformation (1/20)

Coordinate Transformation (4/20)

$$
\begin{aligned}
\mathbf{p}_{\mathrm{xy}} & =\left(\mathrm{x}_{\mathrm{p}}, \mathrm{y}_{\mathrm{p}}\right) \equiv \mathbf{0}+x_{p} \mathbf{x}+y_{p} \mathbf{y} \\
\binom{\mathrm{x}_{\mathrm{p}}}{\mathrm{y}_{\mathrm{p}}} & =\binom{?}{?}+x_{p}\binom{?}{?}+y_{p}\binom{?}{?} \\
& =\binom{2.5}{0.9}
\end{aligned}
$$

Coordinate Transformation (5/20)

$$
\begin{aligned}
\mathbf{p}_{\mathrm{xy}} & =\left(x_{\mathrm{p}}, \mathrm{y}_{\mathrm{p}}\right) \equiv \mathbf{0}+x_{p} \mathbf{x}+y_{p} \mathbf{y} \\
\left(\begin{array}{l}
\mathrm{x}_{\mathrm{p}} \\
\mathrm{y}_{\mathrm{p}}
\end{array}\right] & =\binom{0}{0}+2.5\binom{1}{0}+0.9\binom{0}{1} \\
& =\binom{2.5}{0.9}
\end{aligned}
$$

Coordinate Transformation (6/20)

Canonical coordinate system is the frame-ofreference for all other coordinate systems.

Coordinate Transformation (7/20)

Coordinate Transformation (8/20)

$$
\begin{aligned}
\mathbf{p}_{\mathbf{u v}} & =\left(u_{\mathrm{p}}, v_{\mathrm{p}}\right) \equiv \mathbf{e}+u_{p} \mathbf{u}+v_{p} \mathbf{v} \\
\binom{u_{\mathrm{p}}}{v_{\mathrm{p}}} & =\binom{\mathrm{x}_{\mathrm{e}}}{\mathrm{y}_{\mathrm{e}}}+0.5\binom{\mathrm{x}_{\mathrm{u}}}{\mathrm{y}_{\mathrm{u}}}+(-0.7)\binom{\mathrm{x}_{\mathrm{v}}}{\mathrm{y}_{\mathrm{v}}} \\
& =\binom{0.5}{-0.7}
\end{aligned}
$$

Coordinate Transformation (8/20)

$$
\mathbf{p}_{\mathrm{uv}}=\left(\mathbf{u}_{\mathrm{p}}, \mathrm{v}_{\mathrm{p}}\right) \equiv \mathbf{e}+u_{p} \mathbf{u}+v_{p} \mathbf{v}
$$

Q: Suppose the basis vectors of a frame coordinate $\{\mathbf{e}, \mathbf{u}, \mathbf{v}\}$ is achieved by rotating the basis vectors of the canonical coordinate system $\{\mathbf{0}, \mathbf{x}, \mathbf{y}\}$ by 45°. Determine the basis vectors of the frame coordinate system.

Coordinate Transformation (9/20)

$$
\begin{aligned}
& \mathbf{p}_{\mathrm{xy}}=\left(\mathrm{x}_{\mathrm{p}}, \mathrm{y}_{\mathrm{p}}\right) \equiv \mathbf{0}+x_{p} \mathbf{x}+y_{p} \mathbf{y} \\
& \mathbf{p}_{\mathrm{uv}}=\left(u_{\mathrm{p}}, \mathrm{v}_{\mathrm{p}}\right) \equiv \mathbf{e}+u_{p} \mathbf{u}+v_{p} \mathbf{v}
\end{aligned}
$$

Coordinate Transformation (10/20)

$$
\begin{aligned}
& \mathbf{p}_{\mathrm{xy}}=\left(\mathrm{x}_{\mathrm{p}}, \mathrm{y}_{\mathrm{p}}\right) \equiv \mathbf{0}+x_{p} \mathbf{x}+y_{p} \mathbf{y} \\
& \mathbf{p}_{\mathrm{uv}}=\left(\mathrm{u}_{\mathrm{p}}, \mathrm{v}_{\mathrm{p}}\right) \equiv \mathbf{e}+u_{p} \mathbf{u}+v_{p} \mathbf{v} \\
& \mathbf{p}_{\mathrm{xy}} \leftrightarrow \mathbf{p}_{\mathrm{uv}}
\end{aligned}
$$

Coordinate Transformation (11/20)

$$
\begin{aligned}
& \mathbf{p}_{\mathbf{x y}}=\left(x_{p}, y_{p}\right) \equiv \mathbf{0}+x_{p} x+y_{p} y \\
& \mathbf{p}_{\mathrm{uv}}=\left(u_{p}, v_{p}\right) \equiv \mathbf{e}+u_{p} \mathbf{u}+v_{p} \mathbf{v} \\
& \mathbf{p}_{\mathbf{x y}}=\mathbf{e}+u_{p} \mathbf{u}+v_{p} \mathbf{v}
\end{aligned}
$$

Coordinate Transformation (12/20)

$$
\begin{aligned}
& \mathbf{p}_{\mathrm{xy}}=\mathrm{e}+u_{p} \mathbf{u}+v_{p} \mathbf{v} \\
& {\left[\begin{array}{l}
x_{p} \\
y_{p}
\end{array}\right]=\left[\begin{array}{l}
x_{e} \\
y_{e}
\end{array}\right]+u_{p}\left[\begin{array}{l}
x_{u} \\
y_{u}
\end{array}\right]+v_{p}\left[\begin{array}{l}
x_{v} \\
y_{v}
\end{array}\right]}
\end{aligned}
$$

Coordinate Transformation (13/20)

$$
\mathbf{p}_{\mathbf{x y}}=\mathbf{e}+u_{p} \mathbf{u}+v_{p} \mathbf{v}
$$

$$
\left[\begin{array}{l}
x_{p} \\
y_{p}
\end{array}\right]=\left[\begin{array}{l}
x_{e} \\
y_{e}
\end{array}\right]+\left[\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right]\left[\begin{array}{l}
u_{p} \\
v_{p}
\end{array}\right]
$$

Coordinate Transformation (14/20)

$$
\mathbf{p}_{\mathrm{xy}}=\mathbf{e}+u_{p} \mathbf{u}+v_{p} \mathbf{v}
$$

$$
\left[\begin{array}{l}
x_{p} \\
y_{p}
\end{array}\right]=\left[\begin{array}{l}
x_{e} \\
y_{e}
\end{array}\right]+\left[\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right]\left[\begin{array}{l}
u_{p} \\
v_{p}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
x_{p} \\
y_{p} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & x_{e} \\
0 & 1 & y_{e} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
x_{u} & x_{v} & 0 \\
y_{u} & y_{v} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
u_{p} \\
v_{p} \\
1
\end{array}\right]
$$

Coordinate Transformation (15/20)

$\left[\begin{array}{c}x_{p} \\ y_{p} \\ 1\end{array}\right]=\left[\begin{array}{ccc}x_{u} & x_{v} & x_{e} \\ y_{u} & y_{v} & y_{e} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}u_{p} \\ v_{p} \\ 1\end{array}\right]$
$\mathbf{p}_{x y}=\left[\begin{array}{ccc}\mathbf{u} & \mathbf{v} & \mathbf{e} \\ 0 & 0 & 1\end{array}\right] \mathbf{p}_{u v}$

$$
\left[\begin{array}{c}
x_{p} \\
y_{p} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & x_{e} \\
0 & 1 & y_{e} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
x_{u} & x_{v} & 0 \\
y_{u} & y_{v} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
u_{p} \\
v_{p} \\
1
\end{array}\right]
$$

Credit: Fundamentals of Computer Graphics 3 ${ }^{\text {rd }}$ Edition by Peter Shirley, Steve Marschner | http://www.cs.cornell.edu/courses/cs4620/2019fa/

Coordinate Transformation (18/20)

Coordinate Transformation (19/20)

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{p} \\
y_{p} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & x_{e} \\
0 & 1 & y_{e} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
x_{u} & x_{v} & 0 \\
y_{u} & y_{v} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
u_{p} \\
v_{p} \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
u_{p} \\
v_{p} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
x_{u} & y_{u} & 0 \\
x_{v} & y_{v} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -x_{e} \\
0 & 1 & -y_{e} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{p} \\
y_{p} \\
1
\end{array}\right]}
\end{aligned}
$$

Coordinate Transformation (20/20)

3D Coordinate Transformation (2/2)

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{p} \\
y_{p} \\
z_{p} \\
1
\end{array}\right]=\left[\begin{array}{lllc}
1 & 0 & 0 & x_{e} \\
0 & 1 & 0 & y_{e} \\
0 & 0 & 1 & z_{e} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
x_{u} & x_{v} & x_{w} & 0 \\
y_{u} & y_{v} & y_{w} & 0 \\
z_{u} & z_{v} & z_{w} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
u_{p} \\
v_{p} \\
w_{p} \\
1
\end{array}\right]} \\
& \mathbf{p}_{x y z}=\left[\begin{array}{llll}
\mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\
0 & 0 & 0 & 1
\end{array}\right] \mathbf{p}_{u v w}, \\
& {\left[\begin{array}{c}
u_{p} \\
v_{p} \\
w_{p} \\
1
\end{array}\right]=\left[\begin{array}{llll}
x_{u} & y_{u} & z_{u} & 0 \\
x_{v} & y_{v} & z_{v} & 0 \\
x_{w} & y_{w} & z_{w} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & -x_{e} \\
0 & 1 & 0 & -y_{e} \\
0 & 0 & 1 & -z_{e} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{p} \\
y_{p} \\
z_{p} \\
1
\end{array}\right]} \\
& \mathbf{p}_{u v w}=\left[\begin{array}{cccc}
\mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\
0 & 0 & 0 & 1
\end{array}\right]^{-1} \mathbf{p}_{x y z} .
\end{aligned}
$$

Camera Transformation (2/6)

- Wed like to be able to change the viewpoint in 3D and look in any direction.

Camera Transformation (3/6)

Camera Transformation (4/6)

from xyz-coordinates into uvw-coordinates

Camera Transformation (5/6)

from xyz-coordinates into uvw-coordinates

Camera Transformation (6/6)

$$
\mathbf{p}_{u v w}=\left[\begin{array}{cccc}
\mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\
0 & 0 & 0 & 1
\end{array}\right]^{-1} \mathbf{p}_{x y z} .
$$

canonical-to-frame matrix:

$$
\mathbf{M}_{\mathrm{cam}}=\left[\begin{array}{cccc}
\mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cccc}
x_{u} & y_{u} & z_{u} & 0 \\
x_{v} & y_{v} & z_{v} & 0 \\
x_{w} & y_{w} & z_{w} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & -x_{e} \\
0 & 1 & 0 & -y_{e} \\
0 & 0 & 1 & -z_{e} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Summary (1/5)

Canonical view
volume

Summary (2/5)

Orthographic view
volume

$$
M_{\text {orth }}
$$

Canonical view
volume

Screen

Summary (3/5)

Summary (4/5)

Summary (5/5)

Orthographic view volume
$M=M_{v p}^{*} M_{\text {orth }}{ }^{*} M_{\text {cam }}$

Screen

Code: Orth. to Screen v. 2 (1/1)

Drawing many 3D lines with endpoints a_{i} and b_{i} :

$$
\begin{aligned}
& \text { Construct } M_{v p} \\
& \text { Construct } M_{o r t h} \\
& \text { Construct } M_{c a m} \\
& M=M_{v p} * M_{o r t h} * M_{c a m} \\
& \text { for each line segment }\left(a_{i}, b_{i}\right) \text { do: } \\
& \qquad \begin{array}{l}
\mathrm{p}=\mathrm{M}_{\mathrm{i}} \\
\mathrm{q}=\mathrm{M}^{*} \mathrm{~b}_{\mathrm{i}} \\
\text { drawline }\left(x_{p}, \quad y_{p}, \quad x_{q}, y_{q}\right)
\end{array}
\end{aligned}
$$

Practice Problem-1

- Origin \boldsymbol{O} and basis $\{\boldsymbol{y}, \mathbf{z}\}$ construct a 2D canonical coordinate system. Within this, line bc is our model $\left(\boldsymbol{P}_{x y}\right)$. We want to view it from a new 2D camera (frame) with origin $(4,8)$ looking downward.
(a) Determine canonical-to-frame matrix
(b) Calculate and plot $P_{w v}$.

Practice Problem - 1

Practice Problem - 1

- $\mathrm{e} \equiv(4,8) ; \mathrm{w}=? ; \mathrm{v}=$?

Practice Problem - 1

- $e \equiv(4,8) ; w^{\prime}=? ; v^{\prime}=$?

Practice Problem - 1

- $e \equiv(4,8) ; w^{\prime}=? ; v^{\prime}=$?

$$
\mathbf{p}_{u v}=\left[\begin{array}{lll}
\mathbf{u} & \mathbf{v} & \mathbf{e} \\
0 & 0 & 1
\end{array}\right]^{-1} \mathbf{p}_{x y}
$$

$$
\left[\begin{array}{c}
u_{p} \\
v_{p} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
x_{u} & y_{u} & 0 \\
x_{v} & y_{v} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -x_{e} \\
0 & 1 & -y_{e} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{p} \\
y_{p} \\
1
\end{array}\right]
$$

Practice Problem - 2

a) Explain with appropriate example that the frame-tocanonical transformation can be expressed as a rotation followed by a translation.

- Hint: section 6.5
b) Explain with appropriate example that canonical-toframe transformation is a translation followed by a rotation; they are the inverses of the rotation and translation we used to build the frame-to-canonical matrix.
- Hint: section 6.5

